Investigation of Electron Transfer by Geobacter sulfurreducens Biofilms by using an Electrochemical Quartz Crystal Microbalance

نویسندگان

  • Jerome T Babauta
  • Christopher A Beasley
  • Haluk Beyenal
چکیده

Both the short- and long-term electron-transfer processes of electrode-respiring Geobacter sulfurreducens biofilms are demonstrated by using an electrochemical quartz crystal microbalance (QCM). The QCM monitors the frequency shift from the initial resonant frequency (background) in real time, while the current increases, because of biofilm growth. In the short term, the frequency shift is linear with respect to current for the biofilm. In long-term biofilm growth up to the exponential phase, a second linear region of frequency shift with respect to current is observed. In addition to the frequency shift response at constant polarization, the frequency shift response is coupled to cyclic voltammetry experiments. During cyclic voltammetry, a reproducible, negative increase in frequency shift is observed at oxidizing potentials. The results suggest that a QCM can be used in applications in which it is useful to find the most efficient current producer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Charge transport in films of Geobacter sulfurreducens on graphite electrodes as a function of film thickness.

Harnessing, and understanding the mechanisms of growth and activity of, biofilms of electroactive bacteria (EAB) on solid electrodes is of increasing interest, for application to microbial fuel and electrolysis cells. Microbial electrochemical cell technology can be used to generate electricity, or higher value chemicals, from organic waste. The capability of biofilms of electroactive bacteria ...

متن کامل

A long way to the electrode: how do Geobacter cells transport their electrons?

The mechanism of electron transport in Geobacter sulfurreducens biofilms is a topic under intense study and debate. Although some proteins were found to be essential for current production, the specific role that each one plays in electron transport to the electrode remains to be elucidated and a consensus on the mechanism of electron transport has not been reached. In the present paper, to und...

متن کامل

Iron-Oxide Minerals Affect Extracellular Electron-Transfer Paths of Geobacter spp

Some bacteria utilize (semi)conductive iron-oxide minerals as conduits for extracellular electron transfer (EET) to distant, insoluble electron acceptors. A previous study demonstrated that microbe/mineral conductive networks are constructed in soil ecosystems, in which Geobacter spp. share dominant populations. In order to examine how (semi)conductive iron-oxide minerals affect EET paths of Ge...

متن کامل

Genetic Identification of a PilT Motor in Geobacter sulfurreducens Reveals a Role for Pilus Retraction in Extracellular Electron Transfer

The metal-reducing bacterium Geobacter sulfurreducens requires the expression of conductive pili to reduce iron oxides and to wire electroactive biofilms, but the role of pilus retraction in these functions has remained elusive. Here we show that of the four PilT proteins encoded in the genome of G. sulfurreducens, PilT3 powered pilus retraction in planktonic cells of a PilT-deficient strain of...

متن کامل

Cyclic voltammetry of biofilms of wild type and mutant Geobacter sulfurreducens on fuel cell anodes indicates possible roles of OmcB, OmcZ, type IV pili, and protons in extracellular electron transfer†

Geobacteracea are distinct for their ability to reduce insoluble oxidants including minerals and electrodes without apparent reliance on soluble extracellular electron transfer (ET) mediators. This property makes them important anode catalysts in new generation microbial fuel cells (MFCs) because it obviates the need to replenish ET mediators otherwise necessary to sustain power. Here we report...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2014